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1.0 Summary

This is the final report for work on this contract and covers the results
of the Tasks V and VII. The original effort was structured with four
tasks. Task I, was entitled Design Goals and Requirements and consisted
of the aerodynamic and structural design of an air-cooled vane and rotor.
Work on this task was reported in NASA CR-179606, reference 1. Task II
comprised a total test rig design. This partially completed task was
subsequently canceled. Task III, also cancelled, was to have accomplished
fabrication of equipment designed to Task II. Task IV was directed at
preparation of technical, financial, and schedular reporting.

Tasks V, VI, and VII werc added to the original prooram to accomplish the
redirected program goals. Task V, entitled Turbine Design, consisted of
the aerodynamic design of an uncooled vane and the aerodynamic, heat
transfer, and structural design of an air cooled rotor. Results of this
task were summarized in an AIAA paper, reference 2, and are reported in
detail herein. Effort on Task VI comprised test rig interface work
required to ensure campatibility of the cooled radial turbine rotor
designed in Task V with the LeRC designed test rig, amd was accomplished
through close coordination with NASA LeRC test equipment personnel. Based
on detailed turbine test rig drawings, the compatibility of the NASA test
rig with the research rotor was established. Included was a critical
speed analysis, squeeze film damper analysis, fragment contaimment casing
study, and rotor cooling air supply assessment. The results of these
engineering studies are documented in separate analysis reports and are
not part of this final report. Task VII accomplished the rotor
fabrication. Following NASA approvals, detailed drawings were make and
parts were released for fabrication. A bladeless rotor, a solid-bladed
rotor, and an air-cooled rotor were fabricated. The bladeless rotor was
machined fram solid stock. The solid and hollow rotor were cast at the
Howmet Turbine Camponents Corporation, laPort Division. The bladed rotors
were balanced and spin tested before delivery to NASA 1eRC.




2.0 Introduction

Requirements for advanced turbine engines call for increased specific
power and improved specific fuel consumption (SFC). Results of basic gas
turbine cycle studies have in general shown these requirements can be met
through the use of increased turbine inlet temperatures and increased
cycle pressure ratios. The result is a significant reduction in core
equivalent mass flow rates and hence a comensurate reduction in core flow
passage dimensions. For axial turbines, small passage dimensions are
usually associated with low aspect ratio airfoils giving rise to secondary
flow losses and increased tip clearances, both of which reduce stage
efficiencies. Past studies have shown that radial turbines offer lower
sensitivity to the efficiency penalties of reduced passage dimensions and,
hence, result in designs having higher turbine efficiencies at low
equivalent flow values. In addition, radial turbines offer the potential
of high 1loading per stage. This gives rise to the possible reduction in
mmber of stages which can result in cost benefits. The use of a radial
turbine in the gasifier section thus becames attractive in the design of
small turbine engines.

The development of high temperature capabilities in radial turbines has
recently been pursued via ceramic blading. However prior to the
development of a mature ceramic radial turbine technology, the use of the
air cooled metallic radial turbine has been proposed for advanced engines

with high power-to-weight and improved SFC requirements.

The addition of cooling to the blades of a metal radial turbine has
provided a significant challernge. The investment cast and HIP-bonded
approach developed as part of a previous Army contract (reference 3) has
demonstrated the greatest promise in meeting coolant passage constraints
while yielding rotors demonstrating adequate life. The rotor developed
for that program is shown just prior to the HIP bond process in Figure
2.0-1. The design reported here builds upon that work. This study adds
to the design approach by developing a second generation investment cast
and HIP-fonded cooled metal rotor design capable of cammercial fabrication
and promising acceptable efficiency and rotor life. The current program
seeks to enhance rotor aerodynamics, further improve cooling performance,
and furnish the test rotors necessary to provide definitive experimental
aerodynamic and heat transfer information on cooling of a high temperature
radial turbine rotor.

This report presents the results of work performed on the Cooled
High-Temperature Radial Turbine Program conducted by the Allison Gas
Turbine Division of General Motors and funded by the NASA Iewis Research
Center under NASA contract NAS3-24230. The dbjective of this program was
to design and fabricate two radial turbine rotors for the experimental
investigation of the cooled, high-temperature radial turbine (HTRT)
concept. This vane/rotor system was designed to operate at a rotor inlet
temperature (RIT) of 2300°F and a cycle pressure ratio of 14:1 with
rotor flow of 4.6 1llm/sec. An addendum to the design task was to also

evaluate the cooling design effectiveness and rotor life operating at
2500°F RIT.




Design goals were high aerodynamic performance ( 86%), a rotor life
of 5000 hours, a low-cycle fatigue (ICF) life of 6000 cycles, and the
utilization of fabrication capabilities and material properties available
within the next 10 years. The rotor design features improved cooling
effectiveness and blade argle distribution campared to prior Allison
advanced radial turbine design efforts. The stator was designed assuming
ceramic technology eliminating the need for stator cooling. Effort
included the fabrication of two bladed rotors intended for instrumentation
and test at the NASA Lewis Research Center warm turbine test facility.
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3.0 RESULTS AND DISCUSSION
3.1.1 Engine Configuration Cycle

The radial-inflow turbine design is based on a hypothetical engine
configuration incorporating the design requirements of Table 3.1-1. The
cycle is selected to satisfy these criteria at intermediate rated power
(IRP) as presented in Table 3.1-2. The gas generator incorporates a
conpressor of 14.4:1 pressure ratio with 4.75 lbm/sec airflow. Shaft
power is 920 hp with an SFC of 0.44 lb.hp.hr. Part power (75% IRP)
corditions are presented in Table 3.1-3. Engine cycle data at idle is
shown in Table 3.1-4.

Table 3.1-1. HIRT Design Point Conditions.

Rotor Inlet Total Temperature (°F) 2300
Vane Inlet Total Pressure (psia) 200
Total-to-total Expansion Ratio 3.66
Actual Flow (lhm/sec) 4.56
Equivalent Flow (lbmy/sec) 0.80
Power Output (hp) 1191
Corrected Work (AH/6.) 34.2
Mechanical Speed (rpm) 61,900
Direction of rotation as viewed from

the rear of the turbine oW
Rotor Diameter (inches) 8.02
Rotor Tip Speed (ft/sec) 2166
Specific Speed (xpn/sf:g/ 4secl/ 2) 62.2
Blade-jet Speed Ratio 0.66
Adiabatic Efficiency (T-to-T, %) 87.0

Cooling flows for the gasifier turbine section are set at 5.7%. The vane
is uncooled assuming ceramic construction, the rotor cooling is divided
between internal passage (4.3%), hub film (0.5%) and hub bore (1.0%).

The ergine general arrangement shown in Figure 3.1-1 is a carry over from
the Task I effort. The gas generator turbine rotor bore diameter has been
sized to allow passage of the power turbine extension drive shaft, which
is capable of transmitting in excess of 1000 shp.

3.1.2 Meanline Velocity Diagram and Aerodynamic Design.

Design studies conducted as part of the Task I work have served as a basis
for the turbine design reported here. Table 3.1-5 presents design point
values for the radial turbine. The design reflects selection of the
operating point within the optimal range in terms of specific speed and
blade-jet speed ratio. Average exit swirl values were set to zero for
design point operation. The design does not actempt to be fully optimal
and does reflect limitations imposed by rig hardware design constraints.
This limitation set the vane inner and ocuter radii and width, the rotor
tip diameter and width, the outer shroud contour, and the exit tip and hub
diameters.

~5-
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Development of a radial turbine taking full advantage of increased design
capabilities awaits its application in a suitable engine program.

The meanline performance analysis at 100% IRP shown in Table 3.1-5
presents the relevant geametric, and aerodynamic performance data.
Information is broken down into cycle parameter, velocity diagram, flow
path/blade geametry, 1loss analysis, and general parameters. Station
definition is as follows: O00-inlet, O-vane inlet ocuter diameter, l-vane
exit diameter, 2-rotor inlet diameter, 3-rotor exit plane.

The Allison radial turbine aerodynamic analysis program was used to
predict performance at two additional point, 75% power and idle. These
results are presented in Tables 3.1-6 and 3.1-7.

Detailed aerodynamic design of the rotor was accamplished using 2-D and
3-D inviscid codes in conjunction with a 1-D boundary layer analyses. For
the purpose of this study, the shroud contour and inducer width were
predetermined for conformance to NASA rig hardware constraints. The
meridional flow path is shown in Figure 3.1-2. The blade angle
distribution and hub contour were design parameters subject to selection
in providing the desired blade loading distributions.

The logarithmic blade thickness distributions used were based strongly on
previous HIRT optimization studies. A region of constant wall thickness
as shown in Figure 3.1-3 was employed which reflects casting technology
constraint on the design. Blade metal normal thickness (total for the two
side walls) distributions are shown in Figure 3.1-4.

Blade angle distribution was selected to achieve near constant aerodynamic
loading on the blade for the mean and shroud contours, with minimal
turning downstream of the rotor throat. Distributions of this type load
the blade uniformly over its length and avoid diffusion on the blade
suction surfaces. The selected blade angle distribution is shown in
Figure 3.1-5 along with the AGT 100 power turbine design. The AGT 100
power turbine has demonstrated superior performance and was used as a
guide in this design. Blade sections of the resulting design are shown
and presented in Figures 3.1-6 and 7. The rotor was designed to produce a
near zero exit swirl at design conditions. Figure 3.1-8 shows the exducer
section exit swirl angle as a function of exducer span.

The resulting surface velocity distributions for the rotor are shown in
Figure 3.1-9 through 3.1-11 as predicted by two methods, a meridional
solution (2-D) and a blade to blade solution (quasi 3-D). Comparable
results for the AGT 100 power turbine are shown in Figures 3.1-12 to 14.
The three dimensional results were subsequently smoothed and a 1-D
boundary layer solution was performed. Results are summarized in Figures
3.1-15 to 17. Figure 3.1-18 presents a sumary of the results for the
hub, mean, and tip streamlines.

Note that for the hub streamline, an excessive amount of diffusion was
present over a significant portion of the blade. This was partly the
result of specification of radial filament blading for the rotor as is
camon in radial turbine design practice.
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TURBINE PERFORMANCE ESTIMATE AT 75% POWER

TABLE 3.1-6
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LOSS ANALYSIS
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TABLE 3.1-7 TURBINE PERFORMANCE ESTIMATE AT IDLE POWER
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Radial filament blading eliminates bending stresses in the blade caused by
rotational forces and thus reduces the overall blade stresses.

The one dimensional boundary layer analysis indicated the likelihood of
bourdary layer separation near the intersection of the hub and blade
suction surfaces. This separated region was significantly larger than a
similar region noted on the Task I rotor design as shown in Figure 3.1-19

In order to avoid this loss producing mechanism, the alternate hub
contours of Figure 3.1-20 were examined for their potential in reducing
the degree of diffusion. Results also shown on Figure 3.2-20 indicated
that separation can be delayed or eliminated. Alterations to the mean and
shroud streamline loadings with this hub contouring were fourd to be
insignificant. However it was realized that the impact to the rotor and
blade stress caused by this modification can be significant. Although
blade stresses generally decrease with shortened blades, the potential
exists for rotor disk stresses to rise. Thus, the addition of significant
material to the disk, as in contour B, call for a camprehensive
re-evaluation of the blade/disk stress picture tradeoffs. This analysis
was beyond the scope of the study. For the purpose of this study, the
improvements in hub diffusion offered by contour A were sufficiently
i over those of the baseline to warrant incorporation into the
final rotor design.

3.1.3 Vane Aerodynamic Design

Design point performance of the vane was specified in Table 3.1-5. Table
3.1-8 presents the results of the design process along with a comparison
with both the vane design results for the Task I turbine and the original
NASA design for which the turbine research rig was designed.

Design of the blading was accamplished through the use of the Allison vane
section generator. The resulting blade profile is presented in Figure
3.1-21. Vane velocity profiles are shown in Figure 3.1-22. Results of
the 1-D boundary layer analysis shown in Figure 3.1-23 and 24 indicate a
flow free of separation.

3.2 Rotor Coolant Passage Design

As part of the previously funded cooled radial turbine effort, a highly
instrunented engine scale rotor was tested under warm turbine test
conditions to evaluate it's cooling performance. Based on this work, the
need for improvements in intermal airfoil coolant passage design was
identified as a next step in a cooled high temperature radial turbine
fully meeting the requirements of advanced technology erngines. A thorough
consideration of the coolant flow path design constraints was found to be
most important in achieving a successful design.
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3.2.1 Coolant Passage Design Constraints

Design of the coolant passages within the the blade is constrained by
three considerations:

o blade internal heat transfer

o coolant flow pressure losses

o calpatiblllty with fabrication methods.
Fabrication constraints are by far the most restrictive of the three
canstraints such that the design process, to a high degree, revolves
around the 1limits placed upon coolant passage gecmetry. Fabrication is
accamplished by the lost wax investment casting process which imposes
several constraints on the cooling passage design.

Figure 3.2-1 illustrates the successfully fabricated coolant flow
passageway of the previous program and campares it to the cooling path
ultimately designed for the rotor considered here. A major feature of the
previous design was the flow split between the inducer directed coolant
flow and the flow directed to the hub section of the blade. The presence
of this split mxlt.edmannmerentmmcertaurtyastotheactual
distribution of coolant flow within the blade. This uncertainty is due in
part to the 1lack of appropriate means to adequately inspect the internal
structure of the final cast shell. Additional uncertainty arises in
modeling the camwplexities of the coolant flowpath pressure 1loss
characteristics in the presence of rotational forces setup within the
blade. Uncertainties in the magnitude of coolant flow within the blade
inducer region gave rise to difficulties in interpreting heat transfer
data received from testing this rotor.

Fabrication of the rotor in this previous effort was, however, highly
successful. Features of this design which contributed to it's success
were: the position of the flow inlet on the rotor back-face, the pressure
side discharge arrangement, andﬂle:l.rrtemaltlebemeencoolantpassagas
at the flow split position. Also important to this program was the
capability of securing the core during the fabrication process via
protrusions through the shell at the inducer tip and the hub sections.
Both openings are later closed by a braze process on the usable rotor
casting.

Fabrication constraints which limit the allowable core passage geametries
aremgeneralbasedupmprewwscastlngexpenence These are
summarized below:
© minimm core cross sectional area (0.040
square inches)
0 maximm length of unsupported core section
(dependent upon thickness of section)
© minimm core and wall metal thicknesses
(0. 020mc.h)
© minimm pin fin diameter (0.040 inch).
These criteria apply speclflally to a nominal 8 inch diameter rotor.
Heat transfer considerations in general call for camplete coverage of the
blade surface with adequate intermal convective coefficients obtained via
appropriate caombinations of flow velocity, passage width, and wall surface
roughness treatment.
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Coolant flow pressure loss is limited by available coolant pressures from

bleed and the position at which the coolant air is discharged.
It is the mrtual satisfaction of these considerations which results in a
successful design.

3.2.2 Selection of Coolant Passageway Configuration

The design process consisted of selecting cooling concepts, ranking of
concepts according to campatibility with the established constraints,
examining the ability of each to perform the required cooling, selecting
the final conceptual scheme, and finally determining the detailed coolant
flow path design. Figure 3.2-2 presents concepts initially examined along
with perceived benefits and deficiencies. Due to the goal of the program
to produce a rotor capable of heat transfer test under well defined
corditions, the benefit of producing a design with well defined internal
flow characteristics was emphasized.

Figure 3.2-1 presents the resulting concept used for the detailed design
effort. Of key hanﬂnxz'uathusoatzpt\ﬁm;elnmmatnx;thetnaniung
coolant flow within the important inducer section. It was, however,
determined thatlnanﬂnngvms:na;uxedvnthnltheemﬂmxu'saﬂuon:u1ankm
to achieve an 1anyxdunznbutuxlof<ngmﬂ:a1r<iu§immge thus providing
cooling to the trailing edge region. Constraints on minimum wall and core
thickness preclude the use of trailing edge injection without excessively
thickened blade trailing edges. Thick trailing edges result in excessive
turbine efficiency penalties due to high flow blockage.

3.2.3 Detailed Coolant Flow Path Design

Design of the detailed area distribution and branching coolant flow
circuitry was accamplished using a detailed internal coolant flow model as
indicated in Figure 3.2-3. The method utilizes 1 dimensional flow
modeling within the blade passages via discreet elements which include
frictional and bend 1losses, branching losses, and "pumping effects"
(changes in pressure due to fluid movement within the rotating passage).
Ioss coefficients for each of the flow elements were determined from
correlations available in the open literature. Wall and coolant
taemperature changes due to both heat transfer and rotational effects and
coolant flow preswirling (tangential onboard injection) were also
similarly modeled.

The flow solution summarized in Fmgne:s2w4dﬂmxﬁtnnxﬂuuﬁu:pmmnng
effects are extremely influential within the flow path. These forces
cause significant cxnpmessumr; and expansions of the coolant flow with
change in radius. Thus in order to achieve a uniform distribution of
coolant air at the discharge, the circuitry employing pin fins and
segmented exit passages was devised. The placement of pin fins within the
coolant passage is designed to provide a well defined flow resistance in
the radially outward direction to counter the pumping effect. The pumping
force tends to chnmethe1ﬂowzaduﬂ1y«anmanito‘uuaouum:nnstcxxﬂant
slot. The series nature of the resistance is designed to provide a
cummilative resistance with increasing radius to counter the cumilative
effects of rotation.
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The rotational effects are sufficient to result in predicted temperature
decreases in the bulk coolant flow for radially inward legs even though
the fluid continues to pickup heat. Final design of the coolant flow path
ard determination of required coolant air flow rates was determined by an
iterative process involving heat transfer analyses described in section
3.3 below.

An additional benefit is derived by selecting a design in which the entire
coolant flow is routed through the rotor tip region. The design results
in coolant passage tip region flow velocities giving high convective heat
transfer coefficients. This eliminates the need for the geametric
camplexity of heat transfer enhancement through the use of discreet wall

roughness.

Results of the design work resulted in the baffle and passage thickness
pattern of Figure 3.2-5. Representation of slices of the blade showing
final coolant passage width distributions are shown in Figure 3.2-6. The
trailing edge discharge configuration selected closely follows cooled vane
design technology and minimizes blade trailing edge thickness. The use of
choked flow at the discharge point is, in this case, not feasible due to
the minimm core size constraint. Blade angle distributions shown are the
result of the camprehensive rotor aerodynamic design described above.

In addition, a preswirler was designed as a modification to the NASA test
rig. The function of the preswirler is to efficiently bring the coolant
air up to wheel speed and hence provide coolant air to the blade at the
lowest possible temperatures, a benefit to either an engine or a rig
design. The basic rig without preswirler is shown in Figure 3.2-7. The
details of the preswirler design are presented in Figure 3.2-8 and 9.

3.3 Heat Transfer and Stress Analysis Results

As part of the detailed design process, 2-D and quasi 3-D finite element
heat transfer and stress analyses were made of the engine rotor. Coolant
flow values and coolant passage geametry were selected to give acceptable
temperatures and material strengths within the dual property rotor in
meeting rotor life requirements. Analysis techniques parallel those of the
Task I effort previously reported.

3.3.1 Heat Transfer Results

A comprehensive analysis of the rotor design at 2300 °F (program
requirements) was canmpleted. Figure 3.3-1 presents metal temperatures at
design conditions for the 2-D analysis. The results irdicated that
cooling was adequate in terms of peak blade (50 degrees below Task 1
values) and hub temperature (below 1200°F) requirements. Figure 3.3-2
gives similar results for the analysis of the transient analysis used for
ICF determination. In addition heat transfer calculations evaluating
design feasibility at 2500°F were also campleted. Results of the 2-D heat
transfer analysis are shown in Figure 3.3-3. Rotor internal blade cooling
was set at 4.3% of rotor inlet flow. 1In addition, a 1% hub film cooling
ad a 0.5% bore cooling was included.
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Significant features of these heat transfer results are the uniformity of
blade temperatures, with a peak value of 1642 °F, adequate for the Mar
M247 material in the tip region. Peak temperatures within the PA101
material are in the 1260 °F range ensuring retairment of suitable
relatively low giving rise to low steady state thermal stresses in the
hub.

3.3.2 Stress Analysis Results

Determination of low cycle fatigue (ICF) life is of prime concern for a
radial turbine rotor particularly with a center bore hole. ICF life
assessment was made by modeling transient heat transfer performance of the
rotor during the period of acceleration from idle to design point
corditions. Results for the time interval giving rise to maximum thermal
gradients within the rotor serve as input to the stress analysis. Stress
modeling based upon results for the 2500 F case are shown in Figure
3.3-4. As expected, maximm stresses existed at the hub bore. A summary
of the results of the camplete stress analysis is shown in Table 3.3-1.
The results show that the rotor exceeds all life requirements based on
anticipated 10 year advances in metal technology.

3.4 Test Rig Rotor Scali

Analysis of heat transfer test results from the previous Army sponsored
effort demonstrated the need for a test rotor capable of measuring the hot
gas heat transfer conditions imposed on a radial turbine rotor. A key
camponent to this work is the camprehensive testing of the final rotor
design. This testing is designed to demonstrate turbine aerodynamic
performance ard coolant flow path performance. At the same time it will
provide fundamental data on heat transfer requirements of the radial
turbine blading.

Warm turbine testing will be accomplished utilizing a 1.4 X scaled up
rotor operated with turbine inlet temperatures near 600 °F. Scaling on
key turbine parameters; isentropic spouting velocity ratio and Reynolds
number, results in a test conditions as shown in Table 3.4-1 for the 14.4
inch diameter rotor.

A limited analysis was made of test conditions for which the radial
turbine may be operated in a warm air facilities to simulate engine
operating conditions. Figures 3.4-1 through 4 present convection
coefficients and adiabatic wall temperatures for the test conditions.
Calculated metal temperatures are shown in Figure 3.4-5. Coolant air
temperatures are shown in Figure 3.4-6.
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TABLE 3.3-1 SUMMARY OF ROTOR LIFE CRITERIA

AT TWO ROTOR INLET TEMPERATURES

ROTOR LIFE CRITERIA ARE SATISFIED AT 2500°F RIT

CRITERIA

(30)

.2 CREEP
BURST SPEED

LOW CYCLE FATIGUE

SUMMARY OF STRESS ANALYSIS RESULTS

o COMPUTED 0
REQUIRED 2300°°F 2500°F
1,000 HRS 10,870 HRS >1,900 HRS
71,300 RPM (130%) 79,300 HRS 79,300 HRS
6,000 CYCLES 8,398 CYCLES 6,367 CYCLES
(3,880 CYCLES (3,248 CYCLES
W/0 10%Z MATERIALS W/0 10% MATERIALS
IMPROVEMENT) IMPROVEMENT)
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FIGURE 3.3-4 IDLE TO IRP TRANSIENT EQUIVALENT STRESS
FOR 2500°F RIT
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FIGURE 3.4-4 INTERNAL COOLING CONVECTION COEFFICIENTS,
RIG TEST CONDITIONS
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FIGURE 3.4-6 CALCULATED COOLANT TEMPERATURES,
RIG TEST CONDITIONS
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3.5 Test Rotor Fabrication

T™wo 13 bladed test rotors were fabricated. A solid rotor, fabricated
without coolant passages, provides the capability of detailed aerodynamic
testing including rotating static pressure measurements and is shown in
Figure 4.5-1. A cooled or "hollow" rotor, fabricated with cooled passages
in place, was designed for extensive heat transfer testing. Because of
the large mmber and type of rotor instrumentation, two test rotors are
required. Both rig rotors are designed to be compatible with the NASA
lewis Research Center's warm turbine test facility. Because of the
reduced rotor stress loading at rig operating conditions, both rotors are
designed to be single alloy castings, thus omitting the required
fabrication of the PA101 hub and use of the HIP-bonding process.
Fabrication of the cooled rotor was determined to be completely compatible
with this fabrication technique.

Fabrication of the hollow rotor was accamplished using the ceramic cores
of the type shown in Figure 3.5-2. Details of the coolant flow path
within the highly wrapped blade are shown for both the blade pressure and
suction surfaces. The wax replica of the cooled rotor with cores in place
is shown in Figure 3.5-3. Core-mold attachment points are shown at the
inducer tip and coolant discharge slot. Also shown are ceramic
protrusions at the ocoolant inlet locations. A second view is shown in
Figure 3.5-4.

Figures 3.5-5 and 6 show the final machined casting with integral coollng
passages. A better appreciation of the cooling passages with in the
casting is gained in Figures 3.5-7 through 11 showing a casting cut to
reveal the interior geametry. It should be noted that the rotor cut to
reveal interior geometry differs in one minor detail to the delivered
rotor shown in Figure 3.5-5. The two "half-pins" in the second row of pin
fins in the outer passage of theaducerwereanlttedmthemtorof
Figure 3.5-7 throw.lgh 11. This change in core tooling was made during late
attempts to improve fabrication accuracy which proved unnecessary. No
rotors cast in this late serial number group were final machined.

6 Rotor Spin Test

Prior to deliver of the machined solid bladed and air cooled metal rotors,
a spin test was conducted to demonstrate mechanical integrity. Figures
3.6-1 ard 2 show the rotor after successful test. The rough balance slots
and spin arbor are shown.
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4.0 conclusjons

An advanced air cooled metal rotor has been designed. A caombination of
series and parallel branched internal flow channels carrying coolant air
flow of 4.3%, adequately cools the rotor for an inlet temperature of
2500°F. All fabrication 1limitations were considered in developing the
successful design. Predicted rotor aerodynamics were enhanced through
tailoring of blade angle distribution and hub contour shape to achieve
improved blade loading distributions at the hub, mean, and shroud
streamline positions.

Heat transfer and stress examinations indicate that the resulting design
of the cooled metal radial turbine rotor is capable of meeting all rotor
life and efficiency requirements. Hence the design of a cooled metallic
radial turbine capable of operation at rotor inlet temperatures of 2500°F
has been successfully campleted.

The rotor is campatible with requirements of an advanced turbine engine
utilizing a 14:1 compressor pressure ratio and a 2500°F rotor inlet
temperature. Further effort shows promise in improving turbine efficiency
through the camprehensive study of hub contour modification. Modification
should be driven by aerodynamic performance improvement and developed in
conjunction with heat transfer and stress optimization analyses.
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SUCTION
SIDE

FIGURE 3.5-2 CERAMIC CORES USED TO CAST COOLANT FLOW PASSAGES
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FIGURE 3.5-6 FINAL MACHINED AIR-COOLED TURBINE ROTOR
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FIGURE 3.5-7

SECTIONED CASTING, PRESSURE SIDE
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FIGURE 3.5-8 SECTIONED CASTING, PRESSURE SIDE
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FIGURE 3.5-9 SECTIONED CASTING, SUCTION SIDE
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FIGURE 3.5-10 SECTIONED CASTING, SUCTION SIDE
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FIGURE 3.5-11 SECTIONED CASTING, BLADE HUB
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FIGURE 3.6-1 AIR-COOLED ROTOR, POST SPIN TEST
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FIGURE 3.6-2 AIR-COOLED ROTOR - POST SPIN TEST
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